2x1=10

because numbers are people, too
Persönliches
Fotografie
Programmierung
    • Digilent ZYBO (Zynq-7010)

      The ZYBO is an eval­u­a­tion board for the Xil­inx Zynq-7010 All-Pro­gram­ma­ble SoC made by Dig­i­lent. I got mine from Trenz Elec­tron­ic at a reduced price for aca­d­e­m­ic use.

      I chose it over the Zed­Board (which I already have some expe­ri­ence with) because of the reduced size and since I don’t need the high-den­si­ty I/O jack. It turns out though that the board is very small, yet quite heavy.

      ZYBO package front

      ZYBO package back

      ZYBO board

      One thing to keep in mind though is that despite the rather large num­ber of PMOD con­nec­tors, not all of them might be actu­al­ly use­ful for a giv­en task. The one on the left is con­nect­ed to the Cor­tex proces­sor, the right one is mixed analog/digital, and the three low­er right ones are dif­fer­en­tial, leav­ing exact­ly the one on the low­er left as a log­ic-ded­i­cat­ed PMOD for the FPGA (i.e. a sin­gle end­ed one that is con­nect­ed direct­ly to the FPGA, apart from the XADC one, of course).

      I orig­i­nal­ly intend­ed the board to be used to exper­i­ment with the OV7670 cam­era, but that might turn out to be a prob­lem because of the PMODs. So: Caveat emp­tor.

      I had some trou­ble get­ting Dig­i­lent Adept and/or iMPACT to rec­og­nize my board (despite hav­ing installed the nec­es­sary plu­g­ins), because I had down­loaded the wrong ver­sion of Dig­i­lent Adept — sad­ly the search box on the Dig­i­lent web­site yield­ed Adept 2.3 as the best hit, which is out­dat­ed. After down­load­ing the recent ver­sion from here, every­thing worked as expect­ed and the device was cor­rect­ly iden­ti­fied by iMPACT.

      iMPACT Digilent ZYBO

      iMPACT Digilent ZYBO: Boundary Scan

      Unfor­tu­nate­ly, while Digilent’s own soft­ware, Adept, was now able to talk to the board too, it was still unable to rec­og­nize the chip.

      ZYBO with Digilent Adept 2

      Edit: After ask­ing Dig­i­lent sup­port I received a mail say­ing that the Zybo can’t be pro­grammed with Adept, so that’s expect­ed behav­ior.

      Edit: I wrote up a quick-start tuto­r­i­al for the ZYBO. You can read more about it here.

      März 3rd, 2014 GMT +1 von
      Markus
      2014-03-3T18:13:12+01:00 2014-03-16T17:03:26+01:00 · 2 Kommentare
      Xilinx ZYBO Zynq ZedBoard FPGA
      FPGA

      2 Kommentare auf „Digilent ZYBO (Zynq-7010)“

      1. Mateusz sagt:
        Sonntag, März 16th, 2014 03:03 pm GMT +1 um 15:03 Uhr

        Thanks for writ­ing up quick-start tuto­r­i­al on Zybo.
        Is it pos­si­ble to make a copy of it some­how ? Just in case to have it localy ?

        Antworten
        • Markus sagt:
          Sonntag, März 16th, 2014 04:58 pm GMT +1 um 16:58 Uhr

          Glad it helped some­one. You can fol­low, fork or down­load it at GitHub here.

          Antworten

      Hinterlasse einen Kommentar

      Hier klicken, um das Antworten abzubrechen.

    1. « newer
    2. 1
    3. …
    4. 22
    5. 23
    6. 24
    7. 25
    8. 26
    9. 27
    10. 28
    11. …
    12. 43
    13. older »
    • Kategorien

      • .NET
        • ASP.NET
        • Core
        • DNX
      • Allgemein
      • Android
      • Data Science
      • Embedded
      • FPGA
      • Humor
      • Image Processing
      • Kalman Filter
      • Machine Learning
        • Caffe
        • Hidden Markov Models
        • ML Summarized
        • Neural Networks
        • TensorFlow
      • Mapping
      • MATLAB
      • Robotik
      • Rust
      • Signal Processing
      • Tutorial
      • Version Control
    • Neueste Beiträge

      • Summarized: The E-Dimension — Why Machine Learning Doesn’t Work Well for Some Problems?
      • Use your conda environment in Jupyter Notebooks
      • Building OpenCV for Anaconda Python 3
      • Using TensorFlow’s Supervisor with TensorBoard summary groups
      • Getting an image into and out of TensorFlow
    • Kategorien

      .NET Allgemein Android ASP.NET Caffe Core Data Science DNX Embedded FPGA Hidden Markov Models Humor Image Processing Kalman Filter Machine Learning Mapping MATLAB ML Summarized Neural Networks Robotik Rust Signal Processing TensorFlow Tutorial Version Control
    • Tags

      .NET Accelerometer Anaconda Bitmap Bug Canvas CLR docker FPGA FRDM-KL25Z FRDM-KL26Z Freescale git Gyroscope Integration Drift Intent J-Link Linear Programming Linux Magnetometer Matlab Mono Naismith OpenCV Open Intents OpenSDA Optimization Pipistrello Player/Stage PWM Python Sensor Fusion Simulink Spartan 6 svn tensorflow Tilt Compensation TRIAD ubuntu Windows Xilinx Xilinx SDK ZedBoard ZYBO Zynq
    • Letzte Kommetare

      • Lecke Mio bei Frequency-variable PWM generator in Simulink
      • Vaibhav bei Use your conda environment in Jupyter Notebooks
      • newbee bei Frequency-variable PWM generator in Simulink
      • Markus bei Using TensorFlow’s Supervisor with TensorBoard summary groups
      • Toke bei Using TensorFlow’s Supervisor with TensorBoard summary groups
    • Blog durchsuchen

    • März 2014
      M D M D F S S
      « Feb   Apr »
       12
      3456789
      10111213141516
      17181920212223
      24252627282930
      31  
    • Self

      • Find me on GitHub
      • Google+
      • Me on Stack­Ex­change
      • Ye olde blog
    • Meta

      • Anmelden
      • Beitrags-Feed (RSS)
      • Kommentare als RSS
      • WordPress.org
    (Generiert in 0,315 Sekunden)

    Zurück nach oben.